Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Diabetes Obes Metab ; 26(5): 1929-1940, 2024 May.
Article in English | MEDLINE | ID: mdl-38389430

ABSTRACT

AIM: To evaluate the effect of metformin on cancer incidence in subjects with overweight/obesity and/or prediabetes/diabetes. MATERIALS AND METHODS: We searched MEDLINE, Embase and CENTRAL for randomized controlled trials (RCTs) in adults with overweight/obesity and/or prediabetes/diabetes that compared metformin to other interventions for ≥24 weeks. Independent reviewers selected and extracted data including population and intervention characteristics and new diagnoses of cancer. We used the RoB 2.0 risk-of-bias tool and the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) framework to assess risk of bias and certainty of evidence. RESULTS: From 14 895 records after removal of duplicates, 27 trials were included, providing a total of 10 717 subjects in the metformin group and 10 003 in the control group, with 170 and 208 new cases of cancer, respectively. Using a random-effects model, the relative risk was 1.07 (95% confidence interval 0.87-1.31), with similar results in subgroup analyses by study duration or effect of control intervention on weight. Risk of bias in most studies was low, and no evidence of publication bias was found. Trial sequential analysis provided evidence that the cumulative sample size was large enough to exclude a significant effect of metformin on cancer incidence. CONCLUSIONS: Metformin did not reduce cancer incidence in RCTs involving subjects with overweight/obesity and/or prediabetes/diabetes.


Subject(s)
Metformin , Neoplasms , Prediabetic State , Adult , Humans , Metformin/therapeutic use , Overweight/complications , Overweight/drug therapy , Overweight/epidemiology , Prediabetic State/complications , Prediabetic State/drug therapy , Prediabetic State/epidemiology , Obesity/complications , Obesity/drug therapy , Obesity/epidemiology , Neoplasms/epidemiology , Neoplasms/etiology , Neoplasms/prevention & control
2.
Biomolecules ; 13(12)2023 12 02.
Article in English | MEDLINE | ID: mdl-38136609

ABSTRACT

A major consequence of insulin binding its receptor on fat and muscle cells is the stimulation of glucose transport into these tissues. This is achieved through an increase in the exocytic trafficking rate of the facilitative glucose transporter GLUT4 from intracellular stores to the cell surface. Delivery of GLUT4 to the cell surface requires the formation of functional SNARE complexes containing Syntaxin 4, SNAP23, and VAMP2. Insulin stimulates the formation of these complexes and concomitantly causes phosphorylation of Syntaxin 4. Here, we use a combination of biochemistry and cell biological approaches to provide a mechanistic link between these observations. We present data to support the hypothesis that Tyr-115 and Tyr-251 of Syntaxin 4 are direct substrates of activated insulin receptors, and that these residues modulate the protein's conformation and thus regulate the rate at which Syntaxin 4 forms SNARE complexes that deliver GLUT4 to the cell surface. This report provides molecular details on how the cell regulates SNARE-mediated membrane traffic in response to an external stimulus.


Subject(s)
Receptor, Insulin , SNARE Proteins , Qa-SNARE Proteins/metabolism , SNARE Proteins/metabolism , Receptor, Insulin/metabolism , Phosphorylation , Cell Membrane/metabolism , Insulin/metabolism , Glucose Transporter Type 4/metabolism
3.
Diabetologia ; 66(9): 1643-1654, 2023 09.
Article in English | MEDLINE | ID: mdl-37329449

ABSTRACT

AIMS/HYPOTHESIS: The euglycaemic-hyperinsulinaemic clamp (EIC) is the reference standard for the measurement of whole-body insulin sensitivity but is laborious and expensive to perform. We aimed to assess the incremental value of high-throughput plasma proteomic profiling in developing signatures correlating with the M value derived from the EIC. METHODS: We measured 828 proteins in the fasting plasma of 966 participants from the Relationship between Insulin Sensitivity and Cardiovascular disease (RISC) study and 745 participants from the Uppsala Longitudinal Study of Adult Men (ULSAM) using a high-throughput proximity extension assay. We used the least absolute shrinkage and selection operator (LASSO) approach using clinical variables and protein measures as features. Models were tested within and across cohorts. Our primary model performance metric was the proportion of the M value variance explained (R2). RESULTS: A standard LASSO model incorporating 53 proteins in addition to routinely available clinical variables increased the M value R2 from 0.237 (95% CI 0.178, 0.303) to 0.456 (0.372, 0.536) in RISC. A similar pattern was observed in ULSAM, in which the M value R2 increased from 0.443 (0.360, 0.530) to 0.632 (0.569, 0.698) with the addition of 61 proteins. Models trained in one cohort and tested in the other also demonstrated significant improvements in R2 despite differences in baseline cohort characteristics and clamp methodology (RISC to ULSAM: 0.491 [0.433, 0.539] for 51 proteins; ULSAM to RISC: 0.369 [0.331, 0.416] for 67 proteins). A randomised LASSO and stability selection algorithm selected only two proteins per cohort (three unique proteins), which improved R2 but to a lesser degree than in standard LASSO models: 0.352 (0.266, 0.439) in RISC and 0.495 (0.404, 0.585) in ULSAM. Reductions in improvements of R2 with randomised LASSO and stability selection were less marked in cross-cohort analyses (RISC to ULSAM R2 0.444 [0.391, 0.497]; ULSAM to RISC R2 0.348 [0.300, 0.396]). Models of proteins alone were as effective as models that included both clinical variables and proteins using either standard or randomised LASSO. The single most consistently selected protein across all analyses and models was IGF-binding protein 2. CONCLUSIONS/INTERPRETATION: A plasma proteomic signature identified using a standard LASSO approach improves the cross-sectional estimation of the M value over routine clinical variables. However, a small subset of these proteins identified using a stability selection algorithm affords much of this improvement, especially when considering cross-cohort analyses. Our approach provides opportunities to improve the identification of insulin-resistant individuals at risk of insulin resistance-related adverse health consequences.


Subject(s)
Cardiovascular Diseases , Insulin Resistance , Male , Adult , Humans , Longitudinal Studies , Proteomics , Cross-Sectional Studies , Insulin
4.
Diab Vasc Dis Res ; 20(3): 14791641231183634, 2023.
Article in English | MEDLINE | ID: mdl-37387358

ABSTRACT

BACKGROUND: Peripheral arterial tonometry (PAT) provides non-invasive measures of vascular health. Beneficial effects of metformin on vascular function have been reported in youth with type 1 diabetes (T1D). In the REducing with MetfOrmin Vascular Adverse Lesions (REMOVAL) trial in adults with T1D and high cardiovascular risk, we examined: (i) the extent to which routinely-measured cardiometabolic risk factors explain variance in baseline PAT; and (ii) the effects of metformin on PAT measures. METHODS: Cross-sectional univariable and multivariable analyses of baseline reactive hyperaemia index (RHI) and augmentation index (AI) (EndoPAT® (Itamar, Israel); and analysis of 36-months metformin versus placebo on vascular tonometry. RESULTS: In 364 adults ((mean ± SD) age 55.2 ± 8.5 years, T1D 34.0 ± 10.6 years, HbA1c 64.5 ± 9.0 mmol/mol (8.1 ± 0.8%)), RHI was 2.26 ± 0.74 and AI was 15.9 ± 19.2%. In an exhaustive search, independent associates of (i) RHI were smoking, waist circumference, systolic blood pressure and vitamin B12 (adjusted R2 = 0.11) and (ii) AI were male sex, pulse pressure, heart rate and waist circumference (adjusted R2 = 0.31). Metformin did not significantly affect RHI or AI. CONCLUSION: Cardiometabolic risk factors explained only a modest proportion of variance in PAT measures of vascular health in adults with T1D and high cardiovascular risk. PAT measures were not affected by metformin.


Subject(s)
Diabetes Mellitus, Type 1 , Metformin , Female , Humans , Male , Middle Aged , Arteries , Cardiometabolic Risk Factors , Cross-Sectional Studies , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/drug therapy , Metformin/adverse effects , Adult
5.
J Diabetes Complications ; 37(4): 108433, 2023 04.
Article in English | MEDLINE | ID: mdl-36841085

ABSTRACT

AIMS: Baseline diabetic retinopathy (DR) and risk of development of microalbuminuria, kidney function decline, and cardiovascular events (CVEs) in type 2 diabetes. METHODS: Post-hoc analysis of the PRIORITY study including 1758 persons with type 2 diabetes and normoalbuminuria followed for a median of 2.5 (IQR: 2.0-3.0) years. DR diagnosis included non-proliferative and proliferative abnormalities, macular oedema, or prior laser treatment. Cox models were fitted to investigate baseline DR presence with development of persistent microalbuminuria (urinary albumin-creatinine ratio > 30 mg/g); chronic kidney disease (CKD) G3 (eGFR <60 ml/min/1.73m2); and CVE. Models were adjusted for relevant risk factors. RESULTS: At baseline, 304 (17.3 %) had DR. Compared to persons without DR, they were older (mean ± SD: 62.7 ± 7.7 vs 61.4 ± 8.3 years, p = 0.019), had longer diabetes duration (17.9 ± 8.4 vs. 10.6 ± 7.0 years, p < 0.001), and higher HbA1c (62 ± 13 vs. 56 ± 12 mmol/mol, p < 0.001). The adjusted hazard ratios of DR at baseline for development of microalbuminuria (n = 197), CKD (n = 166), and CVE (n = 64) were: 1.50 (95%CI: 1.07, 2.11), 0.87 (95%CI: 0.56, 1.34), and 2.61 (95%CI: 1.44, 4.72), compared to without DR. CONCLUSIONS: Presence of DR in normoalbuminuric type 2 diabetes was associated with an increased risk of developing microalbuminuria and CVE, but not with kidney function decline.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Diabetic Retinopathy , Renal Insufficiency, Chronic , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Kidney , Albuminuria/complications , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/epidemiology , Diabetic Retinopathy/etiology , Diabetic Retinopathy/complications , Glomerular Filtration Rate
6.
Am J Hum Genet ; 110(2): 284-299, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36693378

ABSTRACT

Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.


Subject(s)
Diabetes Mellitus, Type 2 , Proinsulin , Humans , Proinsulin/genetics , Proinsulin/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Genome-Wide Association Study/methods , Insulin/genetics , Insulin/metabolism , Glucose , Transcription Factors/genetics , Homeodomain Proteins/genetics
7.
Diabetologia ; 66(1): 3-22, 2023 01.
Article in English | MEDLINE | ID: mdl-36198829

ABSTRACT

A technological solution for the management of diabetes in people who require intensive insulin therapy has been sought for decades. The last 10 years have seen substantial growth in devices that can be integrated into clinical care. Driven by the availability of reliable systems for continuous glucose monitoring, we have entered an era in which insulin delivery through insulin pumps can be modulated based on sensor glucose data. Over the past few years, regulatory approval of the first automated insulin delivery (AID) systems has been granted, and these systems have been adopted into clinical care. Additionally, a community of people living with type 1 diabetes has created its own systems using a do-it-yourself approach by using products commercialised for independent use. With several AID systems in development, some of which are anticipated to be granted regulatory approval in the near future, the joint Diabetes Technology Working Group of the European Association for the Study of Diabetes and the American Diabetes Association has created this consensus report. We provide a review of the current landscape of AID systems, with a particular focus on their safety. We conclude with a series of recommended targeted actions. This is the fourth in a series of reports issued by this working group. The working group was jointly commissioned by the executives of both organisations to write the first statement on insulin pumps, which was published in 2015. The original authoring group was comprised by three nominated members of the American Diabetes Association and three nominated members of the European Association for the Study of Diabetes. Additional authors have been added to the group to increase diversity and range of expertise. Each organisation has provided a similar internal review process for each manuscript prior to submission for editorial review by the two journals. Harmonisation of editorial and substantial modifications has occurred at both levels. The members of the group have selected the subject of each statement and submitted the selection to both organisations for confirmation.


Subject(s)
Diabetes Mellitus , Insulin , Humans , United States , Insulin/therapeutic use , Blood Glucose Self-Monitoring , Blood Glucose , Diabetes Mellitus/drug therapy , Technology
8.
Diabetes Care ; 45(12): 3058-3074, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36202061

ABSTRACT

A technological solution for the management of diabetes in people who require intensive insulin therapy has been sought for decades. The last 10 years have seen substantial growth in devices that can be integrated into clinical care. Driven by the availability of reliable systems for continuous glucose monitoring, we have entered an era in which insulin delivery through insulin pumps can be modulated based on sensor glucose data. Over the past few years, regulatory approval of the first automated insulin delivery (AID) systems has been granted, and these systems have been adopted into clinical care. Additionally, a community of people living with type 1 diabetes has created its own systems using a do-it-yourself approach by using products commercialized for independent use. With several AID systems in development, some of which are anticipated to be granted regulatory approval in the near future, the joint Diabetes Technology Working Group of the European Association for the Study of Diabetes and the American Diabetes Association has created this consensus report. We provide a review of the current landscape of AID systems, with a particular focus on their safety. We conclude with a series of recommended targeted actions. This is the fourth in a series of reports issued by this working group. The working group was jointly commissioned by the executives of both organizations to write the first statement on insulin pumps, which was published in 2015. The original authoring group was comprised by three nominated members of the American Diabetes Association and three nominated members of the European Association for the Study of Diabetes. Additional authors have been added to the group to increase diversity and range of expertise. Each organization has provided a similar internal review process for each manuscript prior to submission for editorial review by the two journals. Harmonization of editorial and substantial modifications has occurred at both levels. The members of the group have selected the subject of each statement and submitted the selection to both organizations for confirmation.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin , Humans , Insulin/therapeutic use , Blood Glucose Self-Monitoring , Consensus , Blood Glucose , Insulin Infusion Systems , Diabetes Mellitus, Type 1/drug therapy , Insulin, Regular, Human/therapeutic use , Glucose/therapeutic use , Technology , Hypoglycemic Agents/therapeutic use
9.
PLoS One ; 17(8): e0271110, 2022.
Article in English | MEDLINE | ID: mdl-35951518

ABSTRACT

BACKGROUND: We report the first study to estimate the socioeconomic gap in period life expectancy (LE) and life years spent with and without complications in a national cohort of individuals with type 1 diabetes. METHODS: This retrospective cohort study used linked healthcare records from SCI-Diabetes, the population-based diabetes register of Scotland. We studied all individuals aged 50 and older with a diagnosis of type 1 diabetes who were alive and residing in Scotland on 1 January 2013 (N = 8591). We used the Scottish Index of Multiple Deprivation (SIMD) 2016 as an area-based measure of socioeconomic deprivation. For each individual, we constructed a history of transitions by capturing whether individuals developed retinopathy/maculopathy, cardiovascular disease, chronic kidney disease, and diabetic foot, or died throughout the study period, which lasted until 31 December 2018. Using parametric multistate survival models, we estimated total and state-specific LE at an attained age of 50. RESULTS: At age 50, remaining LE was 22.2 years (95% confidence interval (95% CI): 21.6 - 22.8) for males and 25.1 years (95% CI: 24.4 - 25.9) for females. Remaining LE at age 50 was around 8 years lower among the most deprived SIMD quintile when compared with the least deprived SIMD quintile: 18.7 years (95% CI: 17.5 - 19.9) vs. 26.3 years (95% CI: 24.5 - 28.1) among males, and 21.2 years (95% CI: 19.7 - 22.7) vs. 29.3 years (95% CI: 27.5 - 31.1) among females. The gap in life years spent without complications was around 5 years between the most and the least deprived SIMD quintile: 4.9 years (95% CI: 3.6 - 6.1) vs. 9.3 years (95% CI: 7.5 - 11.1) among males, and 5.3 years (95% CI: 3.7 - 6.9) vs. 10.3 years (95% CI: 8.3 - 12.3) among females. SIMD differences in transition rates decreased marginally when controlling for time-updated information on risk factors such as HbA1c, blood pressure, BMI, or smoking. CONCLUSIONS: In addition to societal interventions, tailored support to reduce the impact of diabetes is needed for individuals from low socioeconomic backgrounds, including access to innovations in management of diabetes and the prevention of complications.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Type 1 , Aged , Diabetes Complications/complications , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/epidemiology , Female , Humans , Life Expectancy , Male , Middle Aged , Retrospective Studies , Scotland/epidemiology , Socioeconomic Factors
10.
Endocrinol Diabetes Metab ; 5(5): e361, 2022 09.
Article in English | MEDLINE | ID: mdl-35964329

ABSTRACT

INTRODUCTION: The regulated delivery of the glucose transporter GLUT4 from intracellular stores to the plasma membrane underpins insulin-stimulated glucose transport. Insulin-stimulated glucose transport is impaired in skeletal muscle of patients with type-2 diabetes, and this may arise because of impaired intracellular trafficking of GLUT4. However, molecular details of any such impairment have not been described. We hypothesized that GLUT4 and/or levels of proteins involved in intracellular GLUT4 trafficking may be impaired in skeletal muscle in type-2 diabetes and tested this in obese individuals without and without type-2 diabetes. METHODS: We recruited 12 participants with type-2 diabetes and 12 control participants. All were overweight or obese with BMI of 25-45 kg/m2 . Insulin sensitivity was measured using an insulin suppression test (IST), and vastus lateralis biopsies were taken in the fasted state. Cell extracts were immunoblotted to quantify levels of a range of proteins known to be involved in intracellular GLUT4 trafficking. RESULTS: Obese participants with type-2 diabetes exhibited elevated fasting blood glucose and increased steady state glucose infusion rates in the IST compared with controls. Consistent with this, skeletal muscle from those with type-2 diabetes expressed lower levels of GLUT4 (30%, p = .014). Levels of Syntaxin4, a key protein involved in GLUT4 vesicle fusion with the plasma membrane, were similar between groups. By contrast, we observed reductions in levels of Syntaxin16 (33.7%, p = 0.05), Sortilin (44%, p = .006) and Sorting Nexin-1 (21.5%, p = .039) and -27 (60%, p = .001), key proteins involved in the intracellular sorting of GLUT4, in participants with type-2 diabetes. CONCLUSIONS: We report significant reductions of proteins involved in the endosomal trafficking of GLUT4 in skeletal muscle in obese people with type 2 diabetes compared with age- and weight-matched controls. These abnormalities of intracellular GLUT4 trafficking may contribute to reduced whole body insulin sensitivity.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Humans , Insulin/metabolism , Muscle, Skeletal/metabolism , Obesity/complications , Obesity/metabolism
12.
Circulation ; 145(18): 1398-1411, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35387486

ABSTRACT

BACKGROUND: SARS-CoV-2, the causal agent of COVID-19, enters human cells using the ACE2 (angiotensin-converting enzyme 2) protein as a receptor. ACE2 is thus key to the infection and treatment of the coronavirus. ACE2 is highly expressed in the heart and respiratory and gastrointestinal tracts, playing important regulatory roles in the cardiovascular and other biological systems. However, the genetic basis of the ACE2 protein levels is not well understood. METHODS: We have conducted the largest genome-wide association meta-analysis of plasma ACE2 levels in >28 000 individuals of the SCALLOP Consortium (Systematic and Combined Analysis of Olink Proteins). We summarize the cross-sectional epidemiological correlates of circulating ACE2. Using the summary statistics-based high-definition likelihood method, we estimate relevant genetic correlations with cardiometabolic phenotypes, COVID-19, and other human complex traits and diseases. We perform causal inference of soluble ACE2 on vascular disease outcomes and COVID-19 severity using mendelian randomization. We also perform in silico functional analysis by integrating with other types of omics data. RESULTS: We identified 10 loci, including 8 novel, capturing 30% of the heritability of the protein. We detected that plasma ACE2 was genetically correlated with vascular diseases, severe COVID-19, and a wide range of human complex diseases and medications. An X-chromosome cis-protein quantitative trait loci-based mendelian randomization analysis suggested a causal effect of elevated ACE2 levels on COVID-19 severity (odds ratio, 1.63 [95% CI, 1.10-2.42]; P=0.01), hospitalization (odds ratio, 1.52 [95% CI, 1.05-2.21]; P=0.03), and infection (odds ratio, 1.60 [95% CI, 1.08-2.37]; P=0.02). Tissue- and cell type-specific transcriptomic and epigenomic analysis revealed that the ACE2 regulatory variants were enriched for DNA methylation sites in blood immune cells. CONCLUSIONS: Human plasma ACE2 shares a genetic basis with cardiovascular disease, COVID-19, and other related diseases. The genetic architecture of the ACE2 protein is mapped, providing a useful resource for further biological and clinical studies on this coronavirus receptor.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Cross-Sectional Studies , Genome-Wide Association Study , Humans , Receptors, Coronavirus , SARS-CoV-2
13.
Hypertension ; 79(1): 36-46, 2022 01.
Article in English | MEDLINE | ID: mdl-34689596

ABSTRACT

The pathophysiological link between adiposity and blood pressure is not completely understood, and evidence suggests an influence of sex and genetic determinants. We aimed to identify the relationship between adiposity and blood pressure, independent of a robust set of lifestyle and metabolic factors, and to examine the modulating role of sex and Angiotensin-Converting Enzyme (ACE) insertion/deletion (I/D) polymorphisms. In the Relationship Between Insulin Sensitivity and Cardiovascular Disease (RISC) study cohort, 1211 normotensive individuals, aged 30 to 60 years and followed-up after 3.3 years, were characterized for lifestyle and metabolic factors, body composition, and ACE genotype. Body mass index (BMI) and waist circumference (WC) were independently associated with mean arterial pressure, with a stronger relationship in women than men (BMI: r=0.40 versus 0.30; WC: r=0.40 versus 0.30, both P<0.01) and in individuals with the ID and II ACE genotypes in both sexes (P<0.01). The associations of BMI and WC with mean arterial pressure were independent of age, sex, lifestyle, and metabolic variables (standardized regression coefficient=0.17 and 0.18 for BMI and WC, respectively) and showed a significant interaction with the ACE genotype only in women (P=0.03). A 5 cm larger WC at baseline increased the risk of developing hypertension at follow-up only in women (odds ratio, 1.56 [95% CI, 1.15-2.10], P=0.004) and in II genotype carriers (odds ratio, 1.87 [95% CI, 1.09-3.20], P=0.023). The hypertensive effect of adiposity is more pronounced in women and in people carrying the II variant of the ACE genotype, a marker of salt sensitivity.


Subject(s)
Adiposity/genetics , Blood Pressure/genetics , Hypertension/genetics , INDEL Mutation , Peptidyl-Dipeptidase A/genetics , Polymorphism, Single Nucleotide , Adult , Body Mass Index , Female , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Sex Factors , Waist Circumference
14.
Diabetes Care ; 45(1): 83-91, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34782354

ABSTRACT

OBJECTIVE: To describe incidence of foot ulceration and amputation-free survival associated with foot ulceration status in a national population-based cohort study of people with diabetes. RESEARCH DESIGN AND METHODS: The study population included 233,459 people with diabetes who were alive in Scotland on 1 January 2012 identified from the national population-based register (national prevalence 4.9%). Characteristics of patients identified from linked hospital and mortality records during follow-up to the end of November 2017 were compared by outcome. Cox regression was used to assess the association between history of foot ulcer and amputation-free survival. RESULTS: The population included 23,395 people with type 1 diabetes and 210,064 people with type 2 diabetes. In total there were 13,093 (5.6%) people who had a previous foot ulceration, 9,023 people who developed a first ulcer, 48,995 who died, and 2,866 who underwent minor or major amputation during follow-up. Overall incidence of first-time foot ulcers was 7.8 per 1,000 person-years (95% CI7.6-7.9) and 11.2 (11.0-11.4) for any ulcer. Risk factors for reduced amputation-free survival included social deprivation, mental illness, and being underweight in addition to conventional cardiovascular risk factors. Adjusted hazard ratios (95% CI) were 2.09 (1.89-2.31) for type 1 diabetes and 1.65 (1.60-1.70) for type 2 diabetes. CONCLUSIONS: The overall incidence of foot ulceration in a population-based study of people with diabetes was 11.2 per 1,000 person-years. Foot ulceration is associated with lower amputation-free survival rate, a potential measure of effectiveness of care among people with diabetes. Mental illness and social deprivation are also highlighted as risk factors.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Foot , Foot Ulcer , Amputation, Surgical , Cohort Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetic Foot/complications , Diabetic Foot/epidemiology , Diabetic Foot/surgery , Humans , Lower Extremity , Retrospective Studies , Risk Factors
15.
J Cell Sci ; 135(1)2022 12 01.
Article in English | MEDLINE | ID: mdl-34859814

ABSTRACT

Adipocytes are key to metabolic regulation, exhibiting insulin-stimulated glucose transport that is underpinned by the insulin-stimulated delivery of glucose transporter type 4 (SLC2A4, also known and hereafter referred to as GLUT4)-containing vesicles to the plasma membrane where they dock and fuse, and increase cell surface GLUT4 levels. Adipocytokines, such as adiponectin, are secreted via a similar mechanism. We used genome editing to knock out syntaxin-4, a protein reported to mediate fusion between GLUT4-containing vesicles and the plasma membrane in 3T3-L1 adipocytes. Syntaxin-4 knockout reduced insulin-stimulated glucose transport and adiponectin secretion by ∼50% and reduced GLUT4 levels. Ectopic expression of haemagglutinin (HA)-tagged GLUT4 conjugated to GFP showed that syntaxin-4-knockout cells retain significant GLUT4 translocation capacity, demonstrating that syntaxin-4 is dispensable for insulin-stimulated GLUT4 translocation. Analysis of recycling kinetics revealed only a modest reduction in the exocytic rate of GLUT4 in knockout cells, and little effect on endocytosis. These analyses demonstrate that syntaxin-4 is not always rate limiting for GLUT4 delivery to the cell surface. In sum, we show that syntaxin-4 knockout results in reduced insulin-stimulated glucose transport, depletion of cellular GLUT4 levels and inhibition of adiponectin secretion but has only modest effects on the translocation capacity of the cells. This article has an associated First Person interview with Hannah L. Black and Rachel Livingstone, joint first authors of the paper.


Subject(s)
Adipocytes , Adiponectin , 3T3 Cells , 3T3-L1 Cells , Adipocytes/metabolism , Adiponectin/genetics , Animals , Cell Membrane/metabolism , Glucose Transporter Type 4/genetics , Humans , Insulin/metabolism , Mice , Qa-SNARE Proteins/genetics
16.
Expert Opin Investig Drugs ; 31(12): 1311-1320, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36655950

ABSTRACT

INTRODUCTION: There have been many recent advances in the treatment of type 1 diabetes (T1D) including in insulin formulations, continuous glucose monitoring (CGM) technology and automated insulin delivery. However, long-term optimal glycemic control is still only achieved in a minority. AREAS COVERED: Adjunct therapy - the use of therapeutic agents other than insulin - is one strategy aimed at improving outcomes. An ideal adjunct agent would improve glycemic control, reduce weight (or weight gain), reduce insulin requirement and prevent complications (e.g. cardiorenal) without increasing hypoglycemia. The amylin analogue pramlintide has been licensed in the USA, while the sodium glucose co-transporter-2 inhibitor (SGLT2i) dapagliflozin, was briefly (2019 - 2021) licensed for type 1 diabetes in Europe and the UK. However, other agents from the type 2 diabetes (T2D) arena including metformin, other SGLT2is, glucagon-like peptide-1 receptor agonists (GLP-1RA) and dipeptidyl peptidase-IV (DPP-4) inhibitors have been investigated. EXPERT OPINION: As evidence emerges for cardiorenal protection by SGLT2is and GLP-1RAs in T2D, it has become increasingly important to know whether people with T1D can also benefit. Here, we review recent trials of adjunct agents in T1D and discuss the efficacy and safety of these agents (alone and in combination) in an era in which continuous glucose monitoring is becoming standard of care.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Blood Glucose Self-Monitoring , Blood Glucose , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Insulin , Combined Modality Therapy , Glucagon-Like Peptide-1 Receptor/agonists
17.
Diabetes Care ; 44(9): 2010-2017, 2021 09.
Article in English | MEDLINE | ID: mdl-34244330

ABSTRACT

OBJECTIVE: Whether advances in the management of type 1 diabetes are reducing rates of diabetic ketoacidosis (DKA) is unclear. We investigated time trends in DKA rates in a national cohort of individuals with type 1 diabetes monitored for 14 years, overall and by socioeconomic characteristics. RESEARCH DESIGN AND METHODS: All individuals in Scotland with type 1 diabetes who were alive and at least 1 year old between 1 January 2004 and 31 December 2018 were identified using the national register (N = 37,939). DKA deaths and hospital admissions were obtained through linkage to Scottish national death and morbidity records. Bayesian regression was used to test for DKA time trends and association with risk markers, including socioeconomic deprivation. RESULTS: There were 30,427 DKA admissions and 472 DKA deaths observed over 393,223 person-years at risk. DKA event rates increased over the study period (incidence rate ratio [IRR] per year 1.058 [95% credibility interval 1.054-1.061]). Males had lower rates than females (IRR male-to-female 0.814 [0.776-0.855]). DKA incidence rose in all age-groups other than 10- to 19-year-olds, in whom rates were the highest, but fell over the study. There was a large socioeconomic differential (IRR least-to-most deprived quintile 0.446 [0.406-0.490]), which increased during follow-up. Insulin pump use or completion of structured education were associated with lower DKA rates, and antidepressant and methadone prescription were associated with higher DKA rates. CONCLUSIONS: DKA incidence has risen since 2004, except in 10- to 19-year-olds. Of particular concern are the strong and widening socioeconomic disparities in DKA outcomes. Efforts to prevent DKA, especially in vulnerable groups, require strengthening.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Ketoacidosis , Bayes Theorem , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/epidemiology , Diabetic Ketoacidosis/epidemiology , Educational Status , Female , Humans , Incidence , Infant , Male , Retrospective Studies , Scotland/epidemiology
18.
Diabetes Spectr ; 34(2): 133-138, 2021 May.
Article in English | MEDLINE | ID: mdl-34149253

ABSTRACT

Time in range (TIR) is gaining ground as an outcome measure in type 1 diabetes trials. However, inclusion of TIR raises several issues for trial design. In this article, the authors begin by defining TIR and describing the current international consensus around TIR targets. They then expand on evidence for the validity of TIR as a primary clinical trial outcome before concluding with some practical, ethical, and logistical implications.

19.
CJC Open ; 3(10): 1257-1272, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34151246

ABSTRACT

The current COVID-19 pandemic, caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) virus, represents the largest medical challenge in decades. It has exposed unexpected cardiovascular vulnerabilities at all stages of the disease (pre-infection, acute phase, and subsequent chronic phase). The major cardiometabolic drivers identified as having epidemiologic and mechanistic associations with COVID-19 are abnormal adiposity, dysglycemia, dyslipidemia, and hypertension. Hypertension is of particular interest, because components of the renin-angiotensin system (RAS), which are critically involved in the pathophysiology of hypertension, are also implicated in COVID-19. Specifically, angiotensin-converting enzyme-2 (ACE2), a multifunctional protein of the RAS, which is part of the protective axis of the RAS, is also the receptor through which SARS-CoV-2 enters host cells, causing viral infection. Cardiovascular and cardiometabolic comorbidities not only predispose people to COVID-19, but also are complications of SARS-CoV-2 infection. In addition, increasing evidence indicates that acute kidney injury is common in COVID-19, occurs early and in temporal association with respiratory failure, and is associated with poor prognosis, especially in the presence of cardiovascular risk factors. Here, we discuss cardiovascular and kidney disease in the context of COVID-19 and provide recent advances on putative pathophysiological mechanisms linking cardiovascular disease and COVID-19, focusing on the RAS and ACE2, as well as the immune system and inflammation. We provide up-to-date information on the relationships among hypertension, diabetes, and COVID-19 and emphasize the major cardiovascular diseases associated with COVID-19. We also briefly discuss emerging cardiovascular complications associated with long COVID-19, notably postural tachycardia syndrome (POTS).


La pandémie actuelle de COVID-19 causée par le coronavirus du syndrome respiratoire aigu sévère 2 (SRAS-CoV-2) est le plus grand enjeu médical des dernières décennies. Elle a mis en évidence des vulnérabilités cardiovasculaires imprévues à tous les stades de la COVID-19 (avant l'infection, pendant la phase aiguë et pendant la phase chronique subséquente). Les principaux facteurs cardiométaboliques dont les associations épidémiologiques et mécanistiques avec la COVID-19 ont été avérées comprennent l'adiposité anormale, la dysglycémie, la dyslipidémie et l'hypertension. L'hypertension suscite un intérêt particulier, car certaines composantes du système rénine-angiotensine (SRA), dont le rôle est crucial dans la physiopathologie de l'hypertension, sont également en cause dans la COVID-19. Plus précisément, l'enzyme de conversion de l'angiotensine 2 (ECA2), une protéine multifonctionnelle du SRA faisant partie de l'axe protecteur du SRA, est également le récepteur permettant au virus SRAS-CoV-2 d'entrer dans les cellules hôtes et de provoquer une infection virale. Les affections cardiovasculaires et cardiométaboliques concomitantes ne font pas que prédisposer les personnes qui en sont atteintes à la COVID-19, elles constituent également des complications de l'infection à SRAS-CoV-2. En outre, de plus en plus de données probantes indiquent que l'atteinte rénale aiguë est fréquente en cas de COVID-19, qu'elle survient tôt et fait l'objet d'une association temporelle avec l'insuffisance respiratoire, et qu'elle est associée à un pronostic sombre, notamment en présence de facteurs de risque cardiovasculaires. Nous discutons ici des maladies cardiovasculaires et rénales dans le contexte de la COVID-19, et présentons les progrès récents sur les mécanismes physiopathologiques en cause dans le lien entre les maladies cardiovasculaires et la COVID-19 en nous attardant sur le SRA et l'ECA2, ainsi que sur le système immunitaire et l'inflammation. Nous présentons de l'information à jour sur les liens entre l'hypertension, le diabète et la COVID-19, et soulignons les principales maladies cardiovasculaires associées à la COVID-19. Nous analysons également brièvement les complications cardiovasculaires émergentes associées à la COVID-19 de longue durée, notamment le syndrome de tachycardie orthostatique posturale (STOP).

20.
medRxiv ; 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33851187

ABSTRACT

Severe COVID-19 is characterised by immunopathology and epithelial injury. Proteomic studies have identified circulating proteins that are biomarkers of severe COVID-19, but cannot distinguish correlation from causation. To address this, we performed Mendelian randomisation (MR) to identify proteins that mediate severe COVID-19. Using protein quantitative trait loci (pQTL) data from the SCALLOP consortium, involving meta-analysis of up to 26,494 individuals, and COVID-19 genome-wide association data from the Host Genetics Initiative, we performed MR for 157 COVID-19 severity protein biomarkers. We identified significant MR results for five proteins: FAS, TNFRSF10A, CCL2, EPHB4 and LGALS9. Further evaluation of these candidates using sensitivity analyses and colocalization testing provided strong evidence to implicate the apoptosis-associated cytokine receptor FAS as a causal mediator of severe COVID-19. This effect was specific to severe disease. Using RNA-seq data from 4,778 individuals, we demonstrate that the pQTL at the FAS locus results from genetically influenced alternate splicing causing skipping of exon 6. We show that the risk allele for very severe COVID-19 increases the proportion of transcripts lacking exon 6, and thereby increases soluble FAS. Soluble FAS acts as a decoy receptor for FAS-ligand, inhibiting apoptosis induced through membrane-bound FAS. In summary, we demonstrate a novel genetic mechanism that contributes to risk of severe of COVID-19, highlighting a pathway that may be a promising therapeutic target.

SELECTION OF CITATIONS
SEARCH DETAIL
...